Our lab on the campus of Kansas State University has limited normal activity and projects due to the coronavirus pandemic. In person activity is currently allowed, but limits on the number of persons per room are still active. All personnel are still reachable by email.

  • Multiplex Restriction Amplicon Sequencing (MRASeq)

    We have developed a novel, rapid, inexpensive, patent-free, next-generation sequencing-based platform for marker discovery, genotyping, and mapping, comparable to genotyping-by-sequencing (GBS), which can be used in quantitative trait loci (QTL) studies, background selection in breeding, and many other genetics and breeding applications in any species (Plant Biotechnology Journal, 2019).

    Physical maps showing the random distribution of 7,595 sMRASeq markers (a) and the nonrandom distribution of 7,564 GBS markers (b) in a wheat population.

  • Resistance to Fusarium Head Blight in Wheat is Controlled by the TaHRC Gene

    Published June 10th, 2019 in Nature Genetics, we have discovered that resistance to fusarium head blight in wheat is controlled by the TaHRC gene.

    Two RNAi transgenic (T1) 'Bobwhite' plants show resistance to FHB spread within a spike compared with the non-transgenic 'Bobwhite' 8 days after inoculation. A diagram of the gene structure of TaHRC showing upstream untranslated regions (gray bars), the 25 bp deletion in the ORF of TaHRC-R (red bar), and the start (ATG) and stop (TAA) codons, and sequence comparison of the start codon region of TaHRC across six susceptible wheat genotypes and the resistant wheat 'Ning'.

    For complete details, see the Nature Genetics publication and our 2018 publication describing a KASP marker for rapid, specific genotyping.

    The USDA and Kansas State University both have issued press releases about this discovery. Here are the USDA press release and the KSU press release.

Recent Publications

 More Publications 

Current Research Projects

   More Projects    

Goals and Objectives

USDA Logo Throckmorton Hall

The goals of the USDA Central Small Grain Genotyping Center in Kansas:

1. Conduct research to accelerate the breeding process by identifying novel DNA markers and genes for important wheat traits.

2. Use markers to select desired wheat genotypes.

3. Provide feedback to breeders seeking to create new cultivars in response to specific challenges such as newly emergent plant pathogens or changing global weather patterns.

Our specific objectives:

1. Maximize the efficiency of plant breeding programs by applying high-throughput DNA marker-assisted selection (MAS) technology, resulting in the early release of superior germplasm and cultivars.

2. Develop new and robust DNA markers associated with resistance to biotic and abiotic stresses and end use quality in wheat through next generation sequencing and functional gene cloning.

3. Fingerprint a core set of cultivars and their breeding parents with DNA markers to develop molecular marker profiles for these cultivars, which will be cross-linked to other genetic information currently available in other USDA databases.

4. Exploit new technologies such as next generation sequencing and other high throughput genotyping technologies for gene discovery and genomic selection in breeding programs.

5. Provide training and consultation on marker analysis to breeders and other scientists.

Center for Grain and Animal Health Research University Seal

Take a virtual tour of our lab:

Downloadable versions: small, medium, large.

Copyright (c) 2017 All rights reserved.